

March 6-9, 2014, Sacramento, CA

Coupled Control of Land Use and Topography on Suspended Sediment Dynamics in an Agriculture-Forest Dominated Watershed, Hokkaido, Japan. C. Wang¹, R. Hatano¹ R. Jiang², K. Kuramochi¹, A. Hayakawa³ 1 Graduate School of Agriculture, Hokkaido University, Sapporo, Japan 2 College of Resources and Environment, Northwest A & F University, Yangling, China 3 Akita Prefectural University, Akita, Japan

INTRODUCTION

- Suspended sediment (SS) transport from land to watercourse is an immense problem that has threatened soil and water conservation in the world (Alexandrov et al., 2003).
- Influence of land use and topography on SS dynamics and yields at different spatial and temporal scales have been reported (Bakker et al., 2008, Casali et al., 2010 and Tang et al., 2011).
- Understanding the dynamics of SS transfer is essential in controlling soil erosion and in implementing appropriate mitigation practices (Heathwaite et al., 2005).

OBJECTIVES

 Assess land use and topography influence on surface runoff and lateral flow response to precipitation.
 Assess influence of land use and topography on SS yield.
 Assess effects of land use, topography and hydrological processes on sediment dynamics in streams.

Shibetsu River Watershed (SRW), Hokkaido, Japan

MATERIAL & METHODS

SRW and two sub-basins FW and AW

		AW	FW	SRW
	Area (km ²)	10.4	71.3	675
	Forest	18.8	83.7	53.7
Land Use	Pasture	80.2	15.1	40.8
	Urban	0.3	0.6	4.3
Slope	0-5	82.0	22.8	54.9
	>5	18.0	77.2	45.1

MATERIAL & METHODS

Sampling

- Stream water table (H)
- Stream discharge (Q)
 - Calibrated H-Q equations
- Water samples
- Automatic sampler
- (high frequency for flood events)
- SS concentration (SSC)
- 0.7µm Glass Microfiber filters.

CSBtinu Qusly Marreitest Trainsfoloo (CWEF)ts

- To characterize the temporal variability Hysteretic loop: of rainfall and runoff events. Interval between the SSC and Q peaks. Wavelet Coherence (WTC) (1) Clockwise (C): SSC>Q
 - (2) Alaritis delations hip between rainfall
 - an(d) not provide a (a): Several peaks in SSC

		Rainfall event	ts Snowmelt events
2	2003	3 –	1
2	2004	2	1 (April)
2	2006	1 	1 (May)
2	2007	1	
Rainfall eve	ents To	otal rainfall (m	m) Maximum intensity (mm/h)
29-31 Jul 20	003	44	7
29-31 Jul 20 8-10 Aug 20	003 003	44 178	7 35
29-31 Jul 20 8-10 Aug 20 9-11 Sep 20	003 003 003	44 178 31	7 35 9
29-31 Jul 20 8-10 Aug 20 9-11 Sep 20 30-31 Aug 2	003 003 003 2004	44 178 31 28	7 35 9 7
29-31 Jul 20 8-10 Aug 20 9-11 Sep 20 30-31 Aug 2 7-9 Sep 20	003 003 003 2004 04	44 178 31 28 27	7 35 9 7 6

Characteristics of the rainfall events

Land use and topography influence on surface

runoff and lateral flow response to precipitation ?

Response of surface runoff and lateral flow to rainfall in AW was similar with FW.

Hydrograph of flood events

Original time series of CWT and WTC

Continuous Wavelet Transform (CWT)

Wavelet Coherence (WTC)

WTC: Time-lag between rainfall and Q

(1) Time-lag in SRW (675 km²) was similar with FW (71.3km²), indicating catchment size was not the dominant factor controlling the time-lag.
(2) Results of WTC showed that response of surface runoff and lateral flow to rainfall was faster in AW than FW.

Influence of land use on soil erosion ?

Mean and maximum SSC were higher in AW than FW, soil

erosion was more serious in pasture land (plant cover).

(Snowmelt events	1-29 April 2004			9-19 May 2006		
		AW	FW	SRW	AW	FW	SRW
F	Tood duration (h)	624	638	679	252	264	276
Total water yield (mm/h)		0.10	0.9	11.7	0.06	5.2	25.2
$Q_m (m^3/s)$		0.29	2.70	33.78	0.18	15.15	72.72
	Q_{max} (m ³ /s)	0.52	4.58	46.92	0.23	17.08	80.99
	SSC _m (mg/l)	1375	142	36	791	359	29
	SSC _{max} (mg/l)	11813	496	110	4416	1877	86
SS yield (kg/h/km ²)		138	19	6	49	275	11

 Q_m : mean discharge; Q_{max} : maximum discharge SSC_m : mean SSC; SSC_{max} : maximum SSC

Influence of land use on SS yield ?

May, snowmelt water recharge stream as groundwater,

more water yield in FW resulted in more SS yield.

Snowmelt events	1-29 April 2004			9-19 May 2006		
	AW	FW	SRW	AW	FW	SRW
Flood duration (h)	624	638	679	252	264	276
Total water yield (mm/h)	0.10	0.9	11.7	0.06	5.2	25.2
$Q_m (m^3/s)$	0.29	2.70	33.78	0.18	15.15	72.72
Q_{max} (m ³ /s)	0.52	4.58	46.92	0.23	17.08	80.99
SSC _m (mg/l)	1375	142	36	791	359	29
SSC _{max} (mg/l)	11813	496	110	4416	1877	86
SS yield (kg/h/km ²)	138	19	6	49	275	11

 Q_m : mean discharge; Q_{max} : maximum discharge SSC_m : mean SSC; SSC_{max} : maximum SSC

Influence of land use on soil erosion ?

Mean and maximum SSC were higher in AW than

FW due to the land cover, grazing or harvest.

	Flood events	29-31 Jul 2003		8-1	8-10 Aug 2003			9-11 Sep 2003		
		AW	FW	SRW	AW	FW	SRW	AW	FW	SRW
	Flood duration(h)	48	39	46	29	29	56	48	48	64
Т	otal water yield (mm/h)	0.12	0.14	0.15	1.66	0.67	0.79	0.08	0.18	0.14
	$Q_m (m^3/s)$	0.35	2.78	28.52	4.79	13.21	148.94	0.22	3.63	25.68
	Q_{max} (m ³ /s)	0.88	2.84	44.38	11.73	22.09	370.49	0.28	4.42	32
	SSC _m (mg/l)	779	38	46	6114	595	297	1972	13	193
	SSC _{max} (mg/l)	4890	132	250	11983	1646	11517	3323	31	460
	SS yield (kg/h/km ²)	94	5	7	10137	397	236	150	2	26

Flood events	30-3	30-31 Aug 2004		7-	7-9 Sep 2004			22-24 July 2007		
	AW	FW	SRW	AW	FW	SRW	AW	FW	SRW	
Flood duration(h)	34	31	30	46	48	64	45	27	63	
Total water yield (mm/h)	0.08	0.15	0.11	0.07	0.09	0.09	0.08	0.13	0.14	
$Q_m (m^3/s)$	0.23	2.95	21.14	0.20	1.85	16.9	0.24	2.63	26.67	
Q_{max} (m ³ /s)	0.44	7.28	31.29	0.37	2.75	24.1	0.33	3.29	61.70	
SSC _m (mg/l)	3391	2145	79	818	15	21	111	19	80	
SSC _{max} (mg/l)	17938	3887	425	5715	110	90	905	69	235	
SS yield (kg/h/km ²)	270	319	9	57	1	2	9	3	11	

SS yield in AW was higher than FW.

August, 2004, more water yield in FW resulted in more SS yield.

Hysteretic loops during flood events

Flood events	AW	FW	SRW
29-31 Jul 2003	8*	A ^ૠ	C*
8-10 Aug 2003	А	С	С
9-11 Sep 2003	А	8	8
30-31 Aug 2004	8	8	С
7-9 Sep 2004	А	С	С
22-24 July 2007	С	С	8

- 8: SSC peak before and after Q peak
- C: SSC peak before Q peak
- A: SSC peak after Q peak
- *8: Complex 8 shaped hysteresis;
 - C: Clockwise shaped hysteresis;
 - A: Anti-clock wise shaped hysteresis
- (1) Earlier sediment supply from pasture land due to
 - (a) Its faster response of streamflow to precipitation as the
 - results of measured hydrograph and WTC showed.
 - (b) Pasture land located nearer to SRW compared with forest.
- (2) Higher sediment concentration and SS yield from pasture land.

- Response of surface runoff and lateral flow to rainfall was faster and more variable in AW than FW during flood events.
- (2) During snowmelt and flood events, soil erosion was more serious in agriculture land due to the plant cover and management practices (e.g., grazing, harvest).
- (3) Earlier sediment supply from agriculture land with higher sediment concentration resulted in "C" hysteresis at SRW, while "A" and "8 " hysteresis happened in AW and FW.

Thanks for

your attention !

MATERIAL AND METHODS

Sampling

Daily stream water table (H)

Daily stream discharge (Q)

Calibrated H-Q equations.

Water samples

Automatic sampler.

Concentrations of SS (SSC)

0.7µm Glass Microfiber

filters.

Continuous Wavelet Transform (CWT)

To characterize the temporal

variability of rainfall and runoff events.

Wavelet Coherence (WTC)

To clarify Relationship between

rainfall and runoffs.

MATERIAL AND METHODS

Sampling

- Daily stream water table (H)
- Daily stream discharge (Q)
 - Calibrated H-Q equations.
- Water samples
 - Automatic sampler.
- Concentrations of SS (SSC)
 - 0.7µm Glass Microfiber

filters.

SSC – Q dynamics during flood events

Hysteretic loop:

Interval between the SSC and Q peaks.

- (1) Clockwise (C): Q>SSC
- (2) Anticlockwise (A):SSC>Q
- (3) Figure 8 (8): Several peaks

Ra	ainfall events	Snowmelt events	Antecedent pre	cipitation i	ndex (API)
2003	3		APIx : where x=	7 or 21 da	ays before
2004	2	1	a rainfall event	and API (r	nm) is the
2006		1	average precipi	tation on t	he xth day
2007	1		before the even	t.	
Flood events	Total rainfal	l (mm) Maximum	n intensity (mm/h)	API7	API21
29-31 Jul 2003	44		7	6.11	0.17
8-10 Aug 2003	178		35	1.29	2.76
9-11 Sep 2003	31		9	5.62	3.67
30-31 Aug 2004	- 28		7	9.3	0.58
7-9 Sep 2004	27		6	7.97	4.14
22-24 July 2007	46		12	3.57	2.52

Characteristics of the rainfall events

WTC: Time-lag between Q and rainfall

Climatic conditions and streamflow

Climatic conditions of SRW during the study period

	Rain	fall (mm)	Annual snow	Maximum snowpack
_	Annual	Maximum daily	fall (cm)	depth (cm)
2003	1276	106	626	71
2004	931	49	612	109
2006	1326	133	465	65
2007	1038	90	362	53
30-yr average	1147	89	480	71