Pedology of Ant Colonized Soils in Doolittle Prairie State Preserve, Iowa, USA

Mary L Tiedeman and C Lee Burras, Iowa State University, Ames, IA

Group	Subgroup	n
88%	100%	16
90%	98%	42

A. pH = 0.03cm + 6.0, $r^2 = 0.34$ OC% = $0.00cm^2 - 0.11cm + 4.9$, $r^2 = 0.89$ IC% = 0.02cm + 0.12, $r^2 = 0.28$

Model of Bioturbation

- buried

Interpretations

- •Ant bioturbation is a critical state factor of soil formation at Doolittle Prairie.
 - Estimated total ant turnover ~1000 years
 - Does not include other prairie organisms
- Taxonomy under ant bioturbation changes rapidly. - Hapludolls to Vermudolls
 - Udolls to "Aquolls"
- •Recycling of bases, enrichment of carbonate minerals, cycling organic material, resetting structure, and porosity are major contributions of ants at Doolittle Prairie.
- Soils now devoid of ants (cultivated, urban) exhibit better horizonation at the expense of crucial ecosystem services.

*Above, thin sections of topsoil. From the left-Doolittle Prairie and Adjacent cultivated field

- Stephan Cover and E.O. Wilson

Soils Role in Restoring Ecosystem

Services Sacramento, California Biodiversity and Ecological Sustainability March 8th, 2014

• Ants excavate/redeposit subsurface soils to surface or abandoned chambers

• Organic material falls/ is

Calcareous and redox. materials brought to surface

• Mound expansion extends beyond surface

Acknowledgments

 Iowa Lakeside Lab- Iowa Regents' University Iowa Department of Natural Resources The Story County Conservation Board