

Evaluating potential indicators of ecosystem functioning

Kurt Reinhart & Lance Vermeire,

Fort Keogh Livestock & Range Research Lab, Montana

Goal-Let variation in data reveal the best predictors of ecosystem functioning

Implications-Efficacy of indicators for rangeland health

Soil stability is routinely measured and interpreted as an indicator of ecosystem function/health

Figure 4. Place sample in sieve.

Figure 5. Complete soil stability kit with water and samples.

% water stable aggregates (% WSA)

soil stability (or slack) test

Hypothesis Soil stability will be positively correlated with plant productivity and hydrologic function

Figure 4. Place sample in sieve.

Figure 5. Complete soil stability kit with water and samples.

% water stable aggregates (% WSA)

soil stability (or slack) test

Measurements

Elevation

Plant measurements

annual net primary productivity (ANPP)

Clipped and sorted plant biomass into 8 groups

Soil measurements

- % soil moisture (June 5-13)
- soil structure (i.e. physical properties)
 - > water infiltration (sorptivity and field-saturated infiltrability)
- soil stability

% water stable aggregates (WSA) (2 size classes of macroaggregates [0.25-1mm and 1-2mm], 0-10cm depth) > rangeland health soil stability tests (subsurface soil stability)

rangeland health soil stability tests (subsurface soil stability)

No grazing since 1999

randomly selected 13 random points silty ecosite (Eapa fine loam, frigid Aridic Argiustolls)

Unique aspects of our study

- 1. all sampled areas were vegetated
- 2. sampled across local gradients (0.3ha)

Correlates with ANPP

* Independent variables

(ANPP	Dependent variable
ANPP		r
infiltrability	0.39 (0.02) <	— (p-value)
sorptivity	0.10 (0.54)	
soil moisture	0.23 (0.16)	
smWSA	0.26 (0.12)	
medWSA	0.03	
subsurface	0.28	
elevation	-0.26 (0.13)	

	ANPP
infiltrability	0.39 (0.02)
sorptivity	0.10 (0.54)
soil moisture	0.23 (0.16)
smWSA	0.26 (0.12)
medWSA	0.03 (0.85)
subsurface soil stability	0.28 (0.14)
elevation	-0.26 (0.13)

Best predictors of variation in ANPP (P=0.002, R²=0.33)

AIC, semir²=squared semi-partial correlation coefficients

Correlates with field-saturated infiltrability

Best predictors of variation in fieldsaturated infiltrability (P<0.001, R²=0.39)

Summary

• ANPP was positively correlated with field saturatedinfiltrability but the two form a positive feedback

Should rangeland health assessments continue measuring soil stability?

Utah

Montana

What do you think?

Fort Keogh Livestock & Range Research Laboratory

Dependent variable

	soil moisture
ANPP	0.23
	(0.16)
	0.08
infiltrability	(0.66)
sorptivity	-0.40 (0.013)
soil moisture	
	0.34
smWSA	(0.034)
	_0.02

* Independent variables

	(0.34)
smWSA	(0.034)
	-0.02
medWSA	(0.92)
subsurface	0.29
soil stability	(0.12)
	-0.56
elevation	(<0.001)

Negative or no correlation between WSA and graminoid production

soil stability

Negative or no correlation between WSA and total root biomass

Water stable aggregates (%)

soil stability

Photo credit: Jim Richardson, Nat. Geo.

Do perceptions on links between soil stability and ecosystem function match empirical evidence?

Literature search details:

- Web of Science
 - terms- soil aggregate*, water stable aggregat*, macroaggregat*, or soil stability
 - ➤ years- 2001-2010
 - > journals- Ecological Application, Plant & Soil, or Soil Biology & Biochemistry
- Results
 - ▶ 112 papers
 - > 19 (17%) papers included the term [water] "infiltration"
 - soil stability was linked to hydrologic function
- Any empirical support for statements linking soil stability to water infiltration?

Many of the relevant statements either 1) lacked reference to direct empirical support, 2) lacked a supporting citation, or 3) most common citation (Oades 1984)

No grazing since 1999

randomly selected 13 random points

Is the robustness of soil stability as a indicator of ecosystem functioning context dependent

Discussions on the use of WSA as an indicator of soil process functions

Soil processes	Indicators	References	
structural stability	WSA	Karlen et al. (1994), Doran & Jones (1996), Moebius et al. (2007), Gugino et al. (2009)	
runoff & erosion	WSA	<i>un</i>	
crusting	WSA	un	row crop
shallow rooting	WSA	<i>um</i>	agriculture
aeration	WSA	un	
water infiltration & transmission	WSA	un	

Links between soil properties and functions are often discussed but are rarely supported by empirical evidence

dex (%)

	Indicator	
	1. Soil Cover	
	2. Perennial grass basal and tree and shrub foliage cover	
	3a. Litter cover	
	3b. Litter cover, origin and degree of decomposition	
	4. Cryptogam cover	
	5. Crust broken-ness	
	6. Erosion type & severity	
	7. Deposited materials	
	8. Surface roughness	
	9. Surface resistance to disturb.	
<	10. Slake test Soil stability	test
	11 Soil texture	

Landscape Function Analysis manual

Do patterns across local gradients mirror those across the broader landscape?

% water stable aggregates

Predicted relationships

soil stability

Negative or no correlation between WSA and root mass ratio

soil stability

So what is going on?

Co-dominant graminoid is autocorrelated with factors negatively related with WSA

Correlations are sensitive to variation in plant community composition

Predictor variables	Response variables	Full data set	Reduced data set
WSA, 0.25-1mm	grass ANPP	F _{1,83} = 4.9, P= 0.03	F _{1,69} = 2.54, P= 0.12
WSA, 0.25-1mm	root biomass	F _{1,70} = 10.1, P= 0.002	F _{1,59} = 6.46, P= 0.01
WSA, 1-2mm	root biomass	F _{1,75} = 6.0, P= 0.02	F _{1,64} = 3.00, P= 0.09
WSA, 0.25-1mm	root mass ratio	F _{1,61} = 7.7, P= 0.007	F _{1,50} = 4.97, P= 0.03

Negative correlation between WSA and biomass of darkly pigmented roots (Carex filifolia)

Taylor & Lacey 2007

soil stability

				smWSA		,	
		()		(0.25-	medWSA	soil	
	ANPP	infiltrability	Sorptivity	1mm)	(1-2mm)	moisture	Elevation
	0.39						
infiltrability	(0.02)						
	0.10	0.42			Deper	ndent va	riable
sorptivity	(0.54)	(0.01)					<u> </u>
	0.26	0.42	0.02		* Inde	ependen [.]	<u>t variable</u>
smWSA	(0.12)	(0.01)	(0.89)				
	0.03	0.04	-0.20	0.13			
medWSA	(0.85)	(0.82)	(0.22)	(0.44)			
	0.23	0.08	-0.40	0.34	-0.02		
soil moisture	(0.16)	(0.66)	(0.013)	(0.034)	(0.92)		
	-0.26	(-0.44 ·	0.05	(-0.59 ·	-0.10	ſ <u>-0.5</u> 6	- I
elevation	(0.13)	' <u> (0.01)</u> '	(0.76)	'_(<0 <u>.001</u>) _'	(0.55)	^ו (<0.0 <u>0</u> 1)	ا م
subsurface	0.28	0.28	0.13	0.47	0.26	0.29	(-0.46 I
soil stability	(0.14)	(0.14)	(0.49)	(0.01)	(0.17)	(0.12)	i_(0.01) /