Available nitrogen is a main resource limiting plant production. In temperate grasslands, free-living N\textsubscript{2} fixation has been estimated to range from 0.1–21 kg N × ha-1 × yr-1 (Reed et al. 2011) and has the potential to affect plant productivity. The regulators of free-living N\textsubscript{2} fixer activity are thought to be ecosystem specific (Fig. 1). Little is known about fire effects and regulators in temperate semiarid grasslands.

Methods

Using qPCR, we measured nifH DNA and mRNA as an analog for N\textsubscript{2} fixation. N\textsubscript{2} fixation has been positively correlated with the copy number of nifH (nitrogenase functional gene) DNA (r2=0.35, 0.81) (Reed et al. 2010, Wakelin et al. 2009) and mRNA (r2=0.72, 0.84) (Bürgmann et al. 2003). Analyses were then performed to determine the best predictor of variation in nifH copy number.

We sampled 18 plots from a mixed-grass prairie site in the Northern Great Plains. Plots were sampled five times from September 2011 - August 2012 (Fig. 2) producing 90 samples (18 × 5).

Results

- Variation in nifH mRNA was best explained by a model (F\textsubscript{4.43} = 5.9, P<0.001, R2 = 0.35) with temperature and three soil properties (Fig. 3).
- Evaluation of the sem2 which better (but not fully) accounts for variable collinearity revealed that temperature, iron, and sulfur contribute equally and more than manganese in explaining variation in nifH mRNA.

Conclusions

- Drought was a main predictor of temporal variation in nifH activity (Fig. 2).
- We failed to support our prediction that time since fire, nitrate, or phosphorus were useful predictors of nifH (Fig. 3).
- Several soil properties (Fig. 3) were moderately useful predictors of nifH variation. However, associations were complex due in part to collinearity among soil properties [e.g. manganese correlated with sulfur (r=0.42), iron (r=0.80), and CEC (r=-0.53)].