SSSA Ecosystem Services Conference March 6-9,2014 Sacramento, CA Soil Science Society of American

Effects of Bulk Density and Soil Water Content on N₂O Emission from Agriculture Soil

Soil Science Lab, Hokkaido University, Japan

Li Mengjie, Shimizu Mariko, Hatano Ryusuke

The production of N_2O in agricultural systems is complex . Reducing these emissions will be challenging.

Moisture content of soil indirectly affected denitrification by inhibiting the diffusion of O_2 into soil, resulting in more denitrification (*Wijler and Delwiche 1954*).

WFPS is primary independent variable used in empirical analyses of N₂O fluxes from agricultural

SOILS (Linn& Doran, 1984; Conen et al., 2000; Dobbie & Smith, 2003; del Prado et al., 2006; Ruser et al., 2006).

Air Water Soil particles

Aerobic condition

WFPS<60%: soil microbial processes are often limited by diffusion of SOC and inorganic-N substrates in soil water films;

WFPS>60%: diffusion of O_2 in soil atmosphere limits aerobic processes.

(a) Wet soil

(b) Dry soil

The difference of **Bulk Density** is largely attributable to variation in total pore space.

Macropores (>0.05 mm in diameter) can drain easily to allow in air within hours of being saturated and enhance horizontal pore water movement across the bank face.

Micropores continue to contain only water.

Figure: Micropores – the spaces within a soil aggregate Macropores – the spaces between soil aggregates

Objective

- Many studies state non-tillage caused higher N_2O emission (Vinten and et al, 2002; Xuejun J and et al, 2006; Cai Y and et al, 2011), but which factors, changed by tillage, control N_2O emission was not so clear and need deeper study.
- Soil core incubation under aerobic environment was conducted to study:

the combined effect of bulk density (BD), soil water content (WC), and nutrient management (NM) on CO_2 , N_2O , NO emission from agriculture soil.

Material & Method

o Soil Samples:

collected from 0–20cm depth soil of fertilizer (F), manure + fertilizer (MF) plots Shin-Hidaka in Hokkaido(SHD), Japan

Andosol soil:

formed by weathering of volcanic ash in well-drained conditions, cover about 50% of upland fields in Japan. They are characterized by low bulk density (Classification Committee of Cultivated Soils,1996, <0.8 g cm⁻³) and are favorable for keeping aerobic conditions. This suggests that the control of nitrification is important for decreasing N₂O and NO emissions from Andosol fields in Japan where urea and NH_4^+ -N are popular forms of N fertilizer.

hin-Hidaka

All the jars will be sealed tightly and incubated for 10 days, Air samples will be taken from the headspace of jar 7 times during incubation for N_2O , CO_2 , NO analyses at 1, 2, 3, 4, 6, 8 and 10 days respectively. After each gas sampling, replacing the headspace air again.

Incubation Jar

After adjusting BD (to achieve a range of water filled pore space (WFPS) from 29% to 83%) and WC, soil will be packed in 50.24 ml rings and then put into a 1.54 L of Mason jar.

The properties analysis

- Just after water adjustment and after incubation, all these items as below will be tested and all analyses will be conducted with 3 replicates:
- pH, NO₃⁻, SO₄²⁻, NH₄⁺, WEOC, soil microbial biomass C (MBC) and N (SMBN), WC and Gas diffusion coefficient (D/D0), Actual bulk density. Then WFPS(m³m⁻³) was calculated accordingly.
- Denitrifying enzyme activity (DEA) was measured after incubation and was calculated as N₂O in headspace between 2 and 4 h under N₂ atmosphere.
- Net ammonification and net nitrification (mg N/kg dwt) are estimated as the difference of NH₄⁺ or NO₃⁻ before and after incubation respectively.
- Net mineralization is estimated as the sum of net ammonification and net nitrification.

Result

----- Accumulated emission

Accumulated CO₂ emission

Accumulated N₂O emission

Accumulated NO emission

Result

----- Chemical Properties

NM	BD	WC	Gas	Net mineralization
F	0.45			31.11
•	0.66	0.45		26.37
	0.45	0.10		40.62
	0.66			13.17
г	0.45		All	28.15
Г	0.66	0.25		31.00
	0.45	0.00		51.42
IVIF	0.66			52.88
-	0.45			33.13
F	0.66	0 45		22.63
	0.45	0.40		34.36
IVIF	0.66			28.66
_	0.45		All+ $C_2 \Pi_2$	29.43
F	0.66	0.25		34.56
	0.45	0.00		38.65
	0.66			41.38

			Gas	W	EC)C	ME	BC
NM	BD	WC		(mg/l	kg	dwt)	(mg/kg dwt)	
				Before		After	Before	After
Г	0.45			97.02		62.50		473.8
Г	0.66	0 45		97.02		75.09	220.4	601.5
	0.45	0.45		88.08		58.20	200.0	205.0
	0.66		۸ : <i>س</i>	88.08		70.78	300.9	159.4
Г	0.45		All	99.12		62.81	206.9	432.5
Г	0.66	0.25		99.12		54.94	200.0	581.8
	0.45	0.35		76.85		48.13	210.6	172.3
	0.66			76.85		49.95	219.0	191.4
Г	0.45			97.02		72.47	226.4	442.9
Г	0.66	0 45		97.02		94.97	220.4	331.8
	0.45	0.45		88.08		66.56	200.0	690.9
	0.66			88.08		67.10	300.9	321.6
Г	0.45		All+ $C_2 \Pi_2$	99.12	\checkmark	64.99	206.9	604.9
Г	0.66	0.25		99.12		62.01	200.0	407.6
	0.45	0.30		76.85		61.81	210.6	351.3
	0.66			76.85		64.31	219.0	386.8

			1							1			
NM	BD	WC	Gas	MBN (mg/kg dwt)				рН			EC		
				Before		After	Before		After	Before	After		
-	0.45			363 84.2		84.2	5.63		5.45	2.45	4.78		
Г	0.66	0 45		363		77.0	5.63		5.51	2.45	4.30		
	0.45	0.45		405		153.1	5.78		5.59	6.23	9.14		
	0.66		Air	405		108.9	5.78		5.87	6.23	6.71		
E	0.45			AII	368		76.7	5.61		5.47	2.77	5.00	
	0.66	0.25		368		61.9	5.61		7 .45	2.77	5.43		
	0.45	0.35		443		82.4	5.78		5.58	7.06	11.00		
	0.66			443		52.6	5.78		5.57	7.06	11.21		
	0.45			363		40.4	5.63		5.85	2.45	2.37		
	0.66	0 45		363		48.8	5.63		5.90	2.45	2.05		
	0.45	0.45		405		83.7	5.78]	5.97	6.23	6.22		
	0.66			405		104.5	5.78		6.15	6.23	5.36		
F	0.45			368		103.0	5.61		5.79	2.77	2.87		
	0.66	0 25		368	$\mathbf{\mathbf{\nabla}}$	54.3	5.61		5.79	2.77	2.90		
	0.45	0.33	C	443		100.8	5.78		5.94	7.06	7.55		
	0.66			443		107.8	5.78		5.97	7.06	7.59		

Result

----- Physical Properties

NM	BD	WC	Air (%)	Liquid (%)	Solid (%)	WFPS (%)	Porosity (%)	D/D0
F	0.45		32.45	36.82	30.73	53.16	69.27	0.2230
Г	0.66	0.45	10.90	54.70	34.40	83.39	65.60	0.0030
	0.45	0.45	34.08	36.80 29.12 51.92		70.88	0.1747	
MF	0.66		13.43	54.68	31.89	80.29	68.11	0.0024
F	0.45		58.55	24.22	17.22	29.26	82.78	0.3078
Г	0.66	0.25	36.27	36.23	27.49	49.97	72.51	0.1198
	0.45	0.35	49.97	24.16	25.87	32.74	74.13	0.2633
	0.66		25.55	36.14	38.30	58.61	61.70	0.0970

Pearson Correlation: Accumulated emission & Physical indexes

	Air treatment											
	Air	Liquid	Solid	WFPS	Porosity	D/D0						
CO ₂	438*	.436*	.327	.416*	327	358						
NO	.657**	781**	267	723**	.267	.605**						
N ₂ O	569**	.688**	.211	.634**	<mark>.634**</mark> 211							
		ŀ	$Air+C_2H_2$ tre	eatment								
CO ₂	.033	115	.120	092	120	.075						
NO	.546**	503*	480*	536**	536** .480*							
N ₂ O	664**	.787**	.272	.736**	272	675**						

Discussion

NM	BD	WC	Gas	Net ammonification	Net Nitrification
E				3	29.92
				· · · ·	21.83
N A C	Nitrif	icatio	nhibited	38.19	
IVIT		hy '	3	2.00	
		Юу		24.34	
F				28.99	
	0.45	0.55		6.36	45.06
	0.66			5.27	47.62
Е	0.45			36.74	-3.62
Г	0.66	0 45		31.91	-9.28
	0.45	0.43		42.15	-7.79
	0.66			46.82	-18.16
F	0.45		All+ $C_2 \Pi_2$	31.93	-2.51
Г	0.66	0.25		36.59	-2.03
	0.45	0.30		39.77	-1.12
	0.66			41.44	-0.06

				M	BN		NC	D ₃ -N	
NM	BD	WC	Gas	(mg/k	g dw	′t)	(mg/kg dwt)		
				Before			Before	After	
–					8	4.2	9.3	39.2	
					7	7.0	9.3	31.1	
	Cum	Ilativo		$E_{coil} > E$		53.1	39.0	77.2	
			$N_2 O O W $	301 > 1)8.9	39.0	41.0	
-			(), Decaus	~ 0.001	ſ	6.7	9.3	33.6	
F	(<i>p</i> <0.	001) a)<0.001) 0	T	1.9	9.3	38.3	
		oll wer	e larger tha	an F soil,		2.4	37.7	82.8	
	provi	ding ei	nough read	tants for		2.6	37.7	85.3	
	denit	rificatio	on and nitri	fication		0.4	9.3	5.7	
F					,	8.8	9.3	0.0	
					8	3.7	39.0	31.2	
	0.66			405		04.5	39.0	20.9	
F	0.45		$AII + C_2 \Pi_2$	368	1(03.0	9.3	6.8	
Г	0.66			368	5	4.3	9.3	7.3	
	0.45	0.35		443	1(8.00	37.7	36.6	
	0.66			443	1(07.8	37.7	37.6	

Ratio

- The N₂O–N/NO–N ratio: <1, N₂O production from nitrification, 1–100 during both nitrification and denitrification, and >100 during denitrification (Farzana Diba, Mariko Shimizu, Ryusuke Hatano, 2012)
- $N_2O-N/[N_2O-N+N_2-N]=[N_2O-N \text{ in Air}]/[N_2O-N \text{ in Air}+C_2H_2]$

				DEA	
NM	BD	WC	Air	N ₂ O average	STD
	0.45			210	59.8
	0.66	0 45		344	17.2
	0.45	0.43		262	63.4
	0.66			360	48.0
F W	FPS of 45	%-WC v	vith high	BD treatment	0 with 2
MF 9	reater DE	A was a te enviro	round 80	% which prov	ride <mark>4</mark> on. <u>2</u>
F	••••	0.45			9 1.8
	0.45	0.45		331	21.2
	0.66		Air ₊ C H	345	68.6
	0.45		$\nabla \Pi + \nabla_2 \Pi_2$	222	2.7
	0.66	0 35		242	6.2
	0.45	0.33		258	25.8
	0.66			250	6.1

Pearson Correlation : Accumulated emission & chemical indexes

	CO ₂	NO	N ₂ O	DEA	$\triangle \mathrm{NH_4^+}$		рН	∆MBN	△EC	$\triangle NO_2^-$	$\triangle NO_3^-$	△S04 ²⁻
Air treatment												
CO ₂	1	243	.380	.392	.178	.249	.350	.080	243	.009	143	.174
NO	243	1	380	547**	012	117	.368	681**	.702**	.663**	.629**	166
N ₂ O	.380	380	1	.580**	.740**	.543**	.314	.152	- .739**	158	780**	.388
DEA	.392	547**	.580**	1	.363	.431*	.098	.226	- .556**	173	535**	.334

Air+ C_2H_2 treatment

CO ₂	1	.371	.008	.304	.616**	.056	.713**	134	.074	132	318	.275
NO	.371	1	254	142	138	166	098	.253	.125	.176	408*	.053
N ₂ O	.008	254	1	.544**	.182	.180	.128	.137	- .899**	922**	191	384
DEA	.304	142	.544**	1	.469*	.083	.426*	059	511*	654**	359	226

Conclusion

- CO₂ emission tended to be higher in MF plot than in F plot, but there was no clear effect of BD and WC.
- N₂O emission was controlled by WC and BD. High WC and high BD promoted N₂O emission because of the contribution of denitrification.
- Most of time, cumulative N₂O emission of MF plot was higher than F plot with more NO₃⁻ and MBN.
- The inhibition of 10%C₂H₂ on nitrification might result in high NO emission.

Thank you very much!