Restoring Arbuscular Mycorrhizal Fungi in Agroecosystems: Oats (Avena sativa) Shows Promise as a Cover Crop

Mike Lehman, Wendy Taheri, & Shannon Osborne

U.S. Dept. of Agriculture - Agricultural Research Service
Brookings, South Dakota
What’s a Cover Crop?

- **Legume**
 - Clovers
 - Peas
 - Vetches

- **Grass**
 - Ryegrass
 - Sudangrass
 - Oats
 - Winter rye

- **Brassica**
 - Turnip
 - Radish
 - Rapeseed
 - Mustard
Why Cover Crops?

Free Energy, Carbon, Nitrogen

Better infiltration
More storage
Less water erosion

Less wind erosion
Promoting Arbuscular Mycorrhizal Fungi with Cover Crops
Arbuscular Mycorrhizal Fungi (AMF)

• Form **obligate** relationships with >80% plants
 – Most crops, excepting the *Brassicas*

Source: Dr. Wendy Taheri, USDA-ARS
AMF nearly eliminated in Ag Soils

- Tillage
- Seasonal Fallow
- Annual Fallow
- Monocropping, simple rotations
- Inorganic fertilizer application
- Fungicide application
- Soil Compaction

![AMF Spores/50 cc soil](chart.png)
AMF Benefits for Agriculture

- Low #s can stress plant
 - Improve production
- Acquire P, Cu, Zn, other nutrients
 - Reduce fertilizer
- Increase Tolerance
 - Disease
 - Reduce pesticides
 - Drought, salinity
- Improve soil structure
 - Reduce erosion
Soil Propagules: White Lake, SD (Fall, 2009)

Soybean - Small Grains/CC - Corn

AMF Propagules/100 g Soil

- None
- Clover
- Oats_Pea
- pea_Timothy
- Canola
- Radish_Pea

* BD
% Colonization of Corn Following Cover Crops (2010, 2011)

Soybean - Small Grains/CC - Corn

% Root Colonization

Average all cover crop treatments
AMF Diversity

<table>
<thead>
<tr>
<th></th>
<th>Agro</th>
<th>Prairie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cropped Field

Prairie
Capturing AMF Diversity with Cover Crops

Classified with validated reference database (Krüger et al., 2012)
79.5% of all the sequences were Rhizophagus-a. Diversispora and Funneliformis each had about 4%; combined they made up 88.0% of the sequences (n=83).
85.4% of the sequences were in the four largest OTUs, Acaulospora, Funneliformis-a, Rhizophagus-a and Claroideoglomus-a (n=82).
NATURAL RE-ESTABLISHMENT OF VESICULAR-ARBUSCULAR MYCORRHIZAE FOLLOWING STRIPMINE RECLAMATION IN WYOMING

BY EDITH BACH ALLEN AND MICHAEL F. ALLEN

Department of Botany, University of Wyoming, Laramie Wyoming 82071, U.S.A.

Vesicular–Arbuscular Mycorrhizae in Taconite Tailings. I. Incidence and Spread of Endogonaceous Fungi Following Reclamation

NANCY COLLINS JOHNSON¹* and ANNE-CRESSEY McGRAW²

¹Department of Botany, University of Wisconsin, Madison, WI 53706 (U.S.A.)
²Land Reclamation Program, Argonne National Laboratory, Argonne, IL 60439 (U.S.A.)

(Accepted for publication 3 September 1987)
Acknowledgements

• Dr. David Douds
• Mr. Kurt Dagel
• Ms. Ann Qualm
• Mrs. Sharon Nichols

Research funding:
U.S. Dept of Agriculture, Agricultural Research Service
South Dakota Corn Utilization Council