Effects of arbuscular mycorrhizal symbiosis on plant water relations and greenhouse gas emissions under changing soil moisture regimes

Cristina Lazcano, Felipe H. Barrios-Masias, Louise E. Jackson Department of Land, Air and Water Resources. University of California Davis

Belowground microbial-plant interactions

Nutrient cycling

C storage

Plant productivity

Plant roots

Plant diversity

Soil physical properties

Soil water regulation

Soil microorganisms

Arbuscular mycorrhizal (AM) symbiosis

Present in 80% of the plant sps, different terrestrial ecosystems

Plant productivity

- Increased uptake and assimilation of N
 - Higher absorptive area, higher access to soil
 - nutrients: mycorrhizal network Preferential uptake of NH₄⁺

Plant water relations

- Increased tolerance to water stress
- Higher access to soil water: mycorrhizal network
- Regulation of hormones (ABA)

Nutrient cycling??

- Decrease the N available in the soil for inmobilization, leaching or gas emissions
- Changes in soil moisture, effects on mineralization, nitrification and denitrification

Does AM colonization of plant roots influence soil greenhouse gas emissions?

- AM symbiosis decreases N₂O and CO₂ emissions through modulation of plant nutrient uptake and direct impacts to N cycling
- i) Effects to the GHG emissions are indirect through the modulation of plant water use

Experimental design

Tomato plant genotype

Mycorrhizal type: 76R MYC

Reduced mycorrhizal colonization: *rmc*

- 20 reps per genotype
- Root in growth cylinders
- Soil: Organic farm
- Established AM fungi population (15-25% colonization)
- High soil organic N pools
- Compost: 8 ton ha⁻¹

Experimental design

Soil moisture

- Two consecutive dry downs
- Simulate wet-dry cycles and patchy water availability typically occurring in the field

Did AM symbiosis increase plant growth and nutrient uptake?

Colonization rates- 76R Mycorrhizal plants: 35%, rmc: 7%

Root biomass

Genotype * treatment: P=0.03

No effects on shoot

Did AM symbiosis regulate plant water relations?

Photosynthetic rate

Stomatal conductance

AM plants- higher slopes- faster reaction to changes in soil moisture
Higher transpiration and assimilation at high soil moisture
Lower transpiration and assimilation at low moisture: tighter water control

Effects of AM symbiosis on soil biochemistry

<u>10% lower soil WFPS</u> over the first dry down (genotype * date: p= 0.04)

Effects of AM symbiosis on soil biochemistry

AM symbiosis: <u>10% lower soil WFPS</u> over the first dry down (genotype * date: p= 0.04)

Effects of AM symbiosis on soil biochemistry

AM symbiosis: <u>10% lower soil WFPS</u> over the first dry down (genotype * date: p= 0.04)

Conclusions

AM symbiosis improved the capacity of the tomato plants to respond to intermittent soil moisture regimes (modulation of photosynthetic rates and stomatal conductance)

Soil N₂O emissions were reduced at high soil moisture with AM colonized plants

Reduction of N_2O emissions related to a higher use of water by AM plants rather that a higher use of N

Soil management that enhances colonization of roots by AM fungi may contribute to a more efficient use of water under changing environmental conditions and the reduction of the GHG emissions from soil

Thank you for your attention!