Monitoring soil-based ecosystem services in El Salvador

March 8, 2014

Sean Patrick Kearney, Edwin Garcia, Rolando Barillas, Steven J. Fonte, Aracely Castro, Kai M. A. Chan, Nicholas C. Coops, Sean M. Smukler

Outline

- Introduction
 - Research objectives
- Methods
 - Project location and sampling
 - GIS analysis
- Preliminary Results
 Maps of soil properties and nutrient deficiencies
- Next steps and applications
 Translating soil properties into ecosystem services

Introduction

Agroforestry for Biodiversity and Ecosystem Services (ABES) Project

Develop and promote management strategies to protect and/or enhance ecosystem services

Evaluate a "slash-and-mulch" agroforestry system (SMAS)

Quantify current ecosystem services and assess degradation at the landscape scale

THE EARTH INSTITUTE COLUMBIA UNIVERSITY

Introduction

Quantify current ecosystem services (ES) and assess degradation at the landscape scale

Methods

Baseline Landscape Assessment (BLA)

Sampling (Nov-Dec 2012)

- $\circ ~~100 ~km^2$
- \circ 144 sites

4 km

- Based on the LDSF methodology
- Hierarchical cluster sampling
 - Soils cores up to 1m
 - Infiltration rate
 - All woody vegetation
 - Canopy/ground cover
 - Observations

Methods Soil analysis

	Soil Property	Analysis Method	
Chemical Properties	SOM	FT-MIR (Walkeley-Black)	
	Total C	FT-MIR	
	Total N	FT-MIR (Keidel)	
	Ρ	Mehlich - 1	
	К	Mehlich - 1	
	exch-Ca	FT-MIR (KCI)	
	exch-Mg	FT-MIR (KCI)	
	Zn	Mehlich - 1	
	рН	Soil:Water (1: 2.5)	
Physical Properties	Sand	Hydrometer	
	Silt	Hydrometer	
	Clay	Hydrometer	
	Soil Depth	Auger Restriction (up to 1m)	
	Infiltration Rate	Decagon MDI	

FT-IR spectrometer (Tensor 37 with HTS-XT)

Micro-plate prepped for FT-MIR analysis

Methods Mapping using geostatistics

Co-Kriging

- Predict values at unsampled locations
- Incorporate cross-correlation with remote sensing variables that are:
 - Higher resolution
 - Easier/cheaper to measure

Source: sciencegl.com

Methods Choosing co-variates

Soil Properties

-1

Prediction Map: Predicted soil property values

Probability Maps: Probability of not exceeding recommended threshold values

Results Example: Potassium

Sample Results

Topsoil K (mg kg ⁻¹)					
Mean (n = 143)	115	(± 65) ¹			
Median	109				
Minimum	13				
Maximum	335				
Sufficiency Threshold	175	(86%) ²			
Critical Threshold	60	(26%) ²			
 ¹ Standard deviation ² Percent of sample sites below threshold 					

Co-Kriging Map Results

Results

Example: Potassium

Probability of Low Soil K

0 0.75 1.5 3 km

Probability of Critical Deficiency

0 0.75 1.5 3 km

Topsoil Constraint Index (TCI)

Raster Math:

$$TCI = \frac{\left(\sum_{(P_1)^2}^{(P_n)^2} \times 100 / n\right)}{\left(\frac{P_{SOM}}{Max(P_{SOM})} + \frac{P_{Depth}}{Max(P_{Depth})}\right) / 2}$$

14

P1...n = probability of
value below sufficiency
threshold

n =Soil property

Next Steps and Applications

Next steps and applications Provisioning Services

16

Spatially specific dataset:

What about Liebig's Law of the Minimum and soil interactions?

Next steps and applications Regulatory Services

Carbon storage
Erosion Risk
Biodiversity

Next steps and applications **Community Perspectives**

ıl	Buenas Prácticas	
ímites Administrativos	Ŷ	Fincas Diversificadas
Ríos	Ø	Turismo
Calles	X	No Quema
Casco Urbano	X	Pastos Mejorados
Cantones	А	Protección de Fuentes de Agua
	В	Brechas Corta Fuego
Fuentes de Agua	HC	Huertos Caseros
	CS	Conservación de Suelos
	R	Restauración
orabilidad	R Usos	Restauración del Suelo
Prabilidad	R Usos	Restauración del Suelo Ganadería
prabilidad Deforestación Derrumbes	R Usos ଜୁ ଜୁ	Restauración del Suelo Ganadería Caña
Prabilidad Deforestación Derrumbes Contaminación	R Usos Ƴ Ƴ ℣	Restauración del Suelo Ganadería Caña Granos Básicos
Prabilidad Deforestación Derrumbes Contaminación Incondice Forestales	R Usos M M M M	Restauración del Suelo Ganadería Caña Granos Básicos Bosques
Prabilidad Deforestación Derrumbes Contaminación Incendios Forestales Quemas Agrícolas	R Usos Ƴ Ƴ ♥ ♥	Restauración del Suelo Ganadería Caña Granos Básicos Bosques

P5: Zona de nacimiento de agua

Acknowledgements

- Supervisor: Dr. Sean Smukler
- Committee Members: Dr. Kai Chan, Dr. Nicholas Coops
- Earth Institute at Columbia University, NY
 - 🗖 Rolando Barillas
- International Centre for Tropical Agriulture (CIAT)
 - Steve Fonte
 - Aracely Castro
 - Edwin Garcia
- PRIMSA, El Salvador

Acknowledgements

The dedicated field crew

Luis, Victor, Jose, Jenny and many others!

Thank you

Contact Info: Sean Patrick Kearney sean.kearney@alumni.ubc.ca | 604-724-9197

http://sal-lab.landfood.ubc.ca/

Co-Kriging Results Nitrogen (Total N)

El Zapotal

EL Zapotal

0 0.75 1.5 3 km

0 0.75 1.5 3 km

Co-Kriging Results Phosphorus (P)

Road River

Road

3 km

Co-Kriging Results Calcium (exch-Ca)

Co-Kriging Results

Magnesium (exch-Mg)

0 0.75 1.5 3 km

Co-Kriging Results Soil Organic Matter (SOM)

Co-Kriging Results Acidity (pH)

Co-Kriging Results

0 0.75 1.5 3 km

Co-Kriging Results

Road River

0 0.75 1.5 3 km

0 0.75 1.5 3 km

0 0.75 1.5 3 km

Deforestation

*Created using data from Hansen et al. 2013 'Global Forest Change 2000-2012'

Randomizing sample plots

