

# Effect of long-term application of fertilizers and manures on methane emission during rice cultivation

Dhadli H S, Brar BS and F Sekhon

Department of Soil Science Punjab Agricultural University, Ludhiana, INDIA



# **Objectives of the study**

- To measure the seasonal methane emissions from rice fields in Punjab state of India.
- To study the effect of long-term application of fertilizers and manures in rice-wheat cropping system on methane emissions during rice cultivation.



# Experiment

- A long-term fertilizer experiment under rice-wheat cropping system that has been in progress since 1996 at Punjab Agricultural University, Ludhiana, India (30° 56'N, 75° 52'E and 247 m above sea level) was selected to study the effect of continuous application of chemical fertilizers in conjunction with green manure, farmyard manure and straw on methane emission from rice fields.
- The experiment has 12 treatments and 7 were selected for studying the effect of fertilization and manuring on CH<sub>4</sub> emissions

| Wheat   |     |     |     | GM  | Rice |     |     |     |     |     |     |
|---------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| <br>Nov | Dec | Jan | Feb | Mar | Apr  | May | Jun | Jul | Aug | Sep | Oct |
|         |     |     |     |     |      |     |     |     |     |     |     |



# Treatments

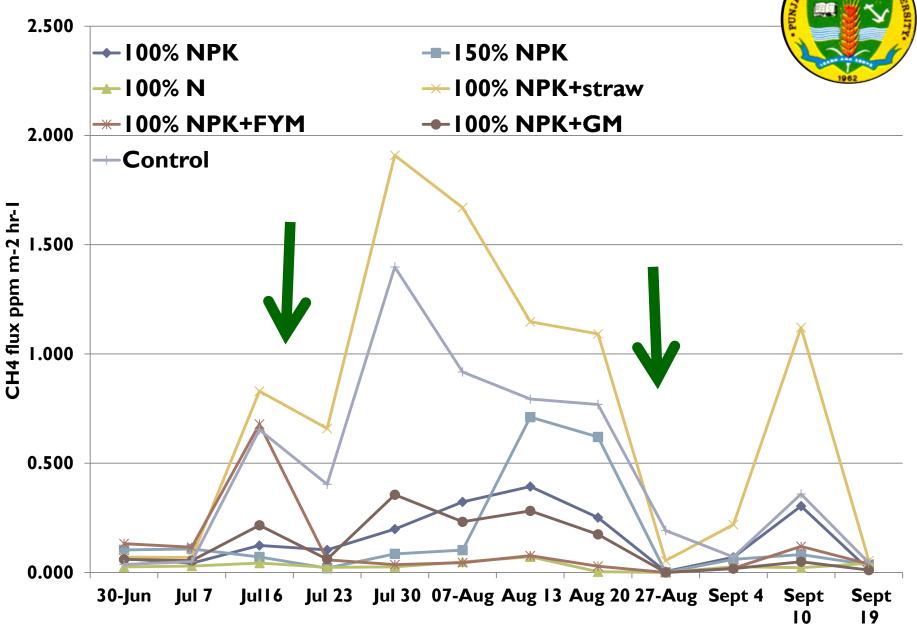
| Treatment | Fertilizer/manure/straw                                                  |
|-----------|--------------------------------------------------------------------------|
| ТІ        | 100 % NPK from chemical fertilizers                                      |
| Т2        | 150 % NPK from chemical fertilizers                                      |
| Т5        | 100 % N only from chemical fertilizers                                   |
| Т7        | 100 % NPK from chemical fertilizers<br>+ straw @ 10 ton ha <sup>-1</sup> |
| Т9        | 100 % NPK from chemical fertilizers<br>+ FYM@ 6 ton ha <sup>-1</sup>     |
| тн        | 100 % NPK from chemical fertilizers<br>+ Green Manure (Sesbania sp.)     |
| Control   | No application                                                           |

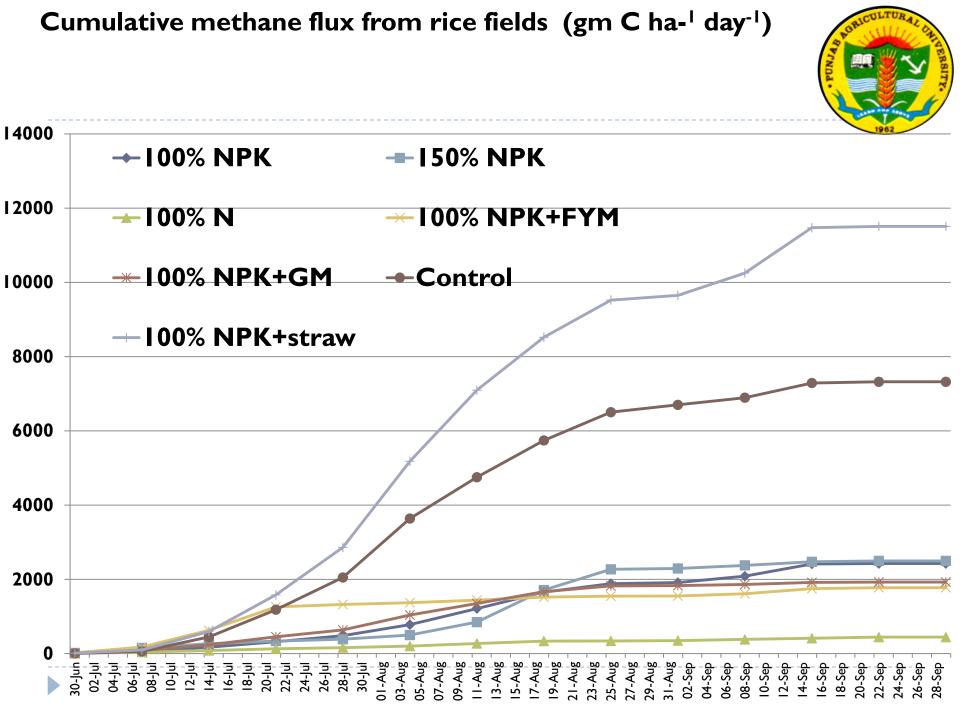
## Assembling of gas collection chambers and bases

Self

**Chamber Base** 

Gurcharan

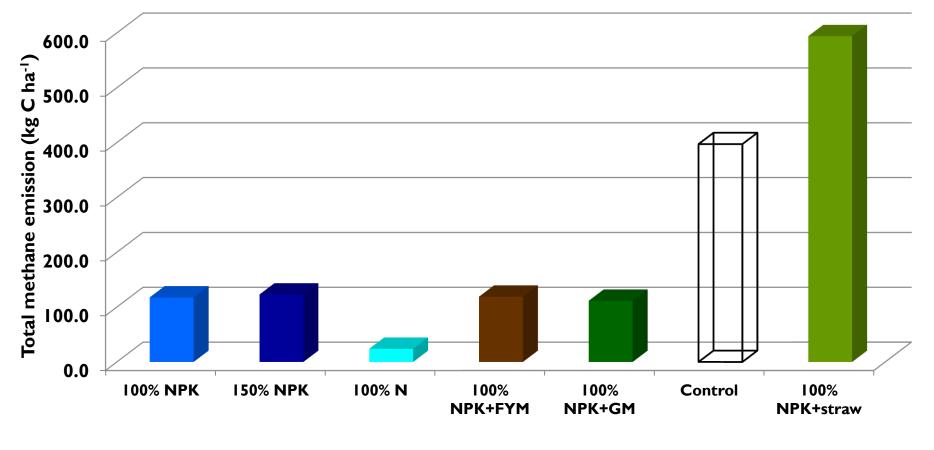

## **Sampling in rice**




# **Working on Gas Chromatographer**

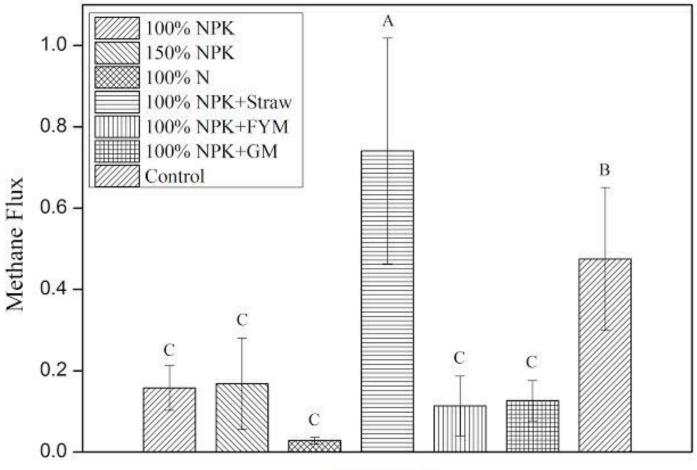


## Methane flux from rice fields









D

Effect of long-term application of fertilizers and manures in rice-wheat cropping system on total methane emission during rice cultivation





#### **Treatment effect & CH<sub>4</sub> emission**



Treatments

# CONTRACTOR OF THE OWNER

## Soil Carbon

| 1962           |             | Total | Total |              |
|----------------|-------------|-------|-------|--------------|
| Treatment      | <b>OC</b> % | % C   | % N   | Non-Labile C |
| 100% NPK       | 0.328       | 0.367 | 0.051 | 0.039        |
| 150% NPK       | 0.360       | 0.398 | 0.055 | 0.038        |
| 100% N         | 0.332       | 0.379 | 0.045 | 0.047        |
| 100% NPK+straw | 0.536       | 0.625 | 0.046 | 0.089        |
| 100% NPK+FYM   | 0.568       | 0.675 | 0.069 | 0.107        |
| 100% NPK+GM    | 0.446       | 0.624 | 0.053 | 0.178        |
| Control        | 0.444       | 0.449 | 0.039 | 0.005        |



## Rice grain and straw yield (T ha<sup>-1</sup>)

| Treatment     | Grain Yield (t/ha) | Straw Yield (t/ha) |
|---------------|--------------------|--------------------|
| 100% NPK      | 6.41               | 8.08               |
| 150%NPK       | 7.90               | 8.41               |
| 100%N         | 5.82               | 6.36               |
| 100%NPK+Straw | 7.15               | 8.06               |
| 100%NPK+FYM   | 7.93               | 9.14               |
| 100%NPK+GM    | 8.19               | 8.69               |
| Control       | 4.69               | 5.09               |
| CD            | 0.74               | 0.76               |



|                                                                                                                 | Date mounted                        |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Dundek P 2011 methods of plant root exudates analysis_ a review                                                 | 27/12/2013 06:04                    |
| TInfrared_Spectroscopy_Fundamentals_and_Applications_4_Organic_Molecules                                        | 27/12/2013 04:29                    |
| 🔁 Krzyszowska A J, Blaylock M J, Vance G F and David M B 1996 Ion-chromatographic analysis of low molecular     | weight organic aci 27/12/2013 04:12 |
| Thesis AmmariTarek-Total soluble Iron (Fe)                                                                      | 27/12/2013 02:14                    |
| Jones Davis L 1998 Organic acids in rhizospere A critical review                                                | 26/12/2013 23:53                    |
| Dion chromatography 1                                                                                           | 26/12/2013 22:46                    |
| Masayuki Tani 2001 Determination of water-soluble low-molecular-weight organic acids in soils by ion chron      | natography 26/12/2013 07:04         |
| 🔁 Yan Zhu1997 Simultaneous determination of carbohydrates and organic acids in beer and wine by ion chrom       | atography 26/12/2013 07:02          |
| Morales JA 1998 Determination by ion chromatography of selected organic and inorganic acids in rainwater        | 26/12/2013 07:01                    |
| 🔁 Baziramakenga R 1995 Determination of organic acids in soil extracts by ion chromatography                    | 26/12/2013 06:42                    |
| Lu et al 2000 Methanogenic responses to exogenous substrates in anaerobic rice soils                            | 26/12/2013 06:21                    |
| Dannenberg S & Conrad R 1999 Effect of rice plants on methane production and rhizospheric metabolism in p       | paddy soil 26/12/2013 06:17         |
| The Servais Pierre 1988 Determination of the biodegradable fraction of dissolved organic matter in waters       | 06/12/2013 01:18                    |
| Repeta Daniel J. 1988 Origin, composition and fate of dissolved organic carbon                                  | 06/12/2013 01:16                    |
| TMcDowell and Likens 1988 Origin, Composition, and Flux of Dissolved Organic Carbon in the Hubbard Brook        | Valley 06/12/2013 01:15             |
| 🔁 Amos B and Walters D T 2006 Maize Root Biomass and Net Rhizodeposited Carbon_An Analysis of the Literatu      | ure 06/12/2013 00:47                |
| Lardy R 2011 A new method to determine soil organic carbon equilibrium                                          | 26/09/2013 05:49                    |
| Lard R 2011 A new method to determine soil organic carbon equilibrium                                           | 26/09/2013 05:43                    |
| 🔁 Rabenhorst MC and Stolt MH 2012 Field Estimations of Soil Organic Carbon                                      | 26/09/2013 05:28                    |
| 🔁 Bowman R A 1991 Spectroscopic Method for Estimation of Soil Organic Carbon                                    | 26/09/2013 05:27                    |
| 🔁 Chow T A 2005 Filter pore size selection for characterizing dissolved organic carbon and trihalomethane precu | ursors from soils. 26/09/2013 05:16 |
| 🔁 ceramicscatalogue                                                                                             | 24/09/2013 09:37                    |
| 🔁 extract pressure plate                                                                                        | 24/09/2013 09:30                    |
| 🔁 2005g2-man                                                                                                    | 24/09/2013 09:28                    |
| Pore water samplers slides                                                                                      | 24/09/2013 09:25                    |
| T UMS-Pore-Water-Sampler_0                                                                                      | 24/09/2013 09:17                    |
| M1-1252_53e Suction cups                                                                                        | 24/09/2013 09:15                    |
| 🔁 Jones And Willett 2006 experimental evaluation of methods to quantify dissolved organic nitrogen and dissolv  | ved Organic Carbo 22/09/2013 11:45  |
| 🔁 Yang X 2010 Methane emissions from double rice agriculture under long-term fertilizing systems i Hunan chi    |                                     |
| Lu Yahai 2004 Contribution of Plant Photosynthates to Dissolved Organic Carbon in a Flooded Rice Soil           | 22/09/2013 11:41                    |
| TIL u Yahai 2000 Dissolved organic carbon and methane emissions from a rice paddy fertilized with ammonium      | and nitrate 22/09/2013 11:38        |



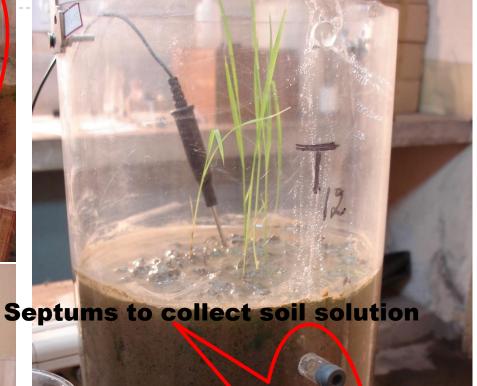
- High methane emissions in control could be attributed to higher excretion of root exudates by plants under nutrient stresses.
- Root exudates are simple sugars, susceptible easy decomposition
- In-situ study required to:
  - estimate soil solution organic carbon
  - simultaneously recording methane emission










#### pH, Eh and Temp meter





1 12:00am

#### Lab study to measure CH<sub>4</sub> fluxes and soil carbon dynamics



PLORICULTURAL CA



## Special thanks to T.Andy Black Professor Faculty of Land and Food Systems, UBC,Vancouver

# Thank you