Imagine you’ve just won a wonderful two-week trip to a foreign land. You don’t speak the language. You’ll download a translation app, right? Perhaps book a tour with an English-speaking guide?

When it comes to science communications, we, the scientific ambassadors, are the equivalent of those translation apps or tour guides. It’s our job to explain to our audience the important facts in language they are familiar with, and most people are not familiar with the language of science. Well, maybe it’s not an official language, but we certainly have our fair share of jargon and styles that make our communications hard to understand. (For more on jargon, see https://bit.ly/2FAHLO7.)

When the general public consumes scientific content, it’s usually part of their “infotainment.” Even if they are trying to solve a problem, they are not going to watch your YouTube video or read your blog with the gusto of a co-worker in your field. It’s our job to be clear and concise. Offering accurate, relatable information with a bit of humor and some analogies is our job as effective science communicators.

Let’s look at this example from Gwen Pearson, an entomologist. She compares a technical description of research to a simplified (and funny) version:

Technical version: Insect exoskeletons pass through a bat’s digestive tract relatively unchanged other than mastication and mechanical damage. Therefore, the reflective properties of the cuticle remain unchanged.

Public version: Bats have sparkly poop because they eat insects.

As Pearson says, “We aren’t making information simple for stupid people; we are translating our complex disciplinary language for non-native speakers of science. Those non-native speakers are busy and smart”¹

Now, of course, sparkly bat poop isn’t a full explanation of her research. However, it gets people’s attention, so that makes it a good lead. (For more about “leading” people into your science, see this CSA News magazine article: https://bit.ly/2UXo1IP.) With a few more simple, relatable sentences, she might have a captivated audience, willing to stick with other information she provides.

Let’s quickly look at how this gap in “science language” processing starts. Most people who go into scientific fields already did well in science and math in high school. They continued studying the same in college. However, those who choose other career paths may stop with high school subjects—or take just enough science to fulfill graduation requirements. Many of us take a foreign language in high school, and if we continued to study it through college, we’d be more proficient (and continue practicing throughout life!). Right there at the collegiate level, there is a growing gap between those who are “fluent in science” and those who are not.

We know science communication to the public is a tough job. We also know it’s crucial for the public to understand our work. Communicating more effectively might even help us get more grant money. We’ve compiled all of our technique-based communications articles in one place for you—See “Improve Your Science Communications” to the right.

Do you have a smart, quick way to explain your field of study or practice? If so, please send it to me at sfisk@sciencesocieties.org. I’d love to include it as a case study in science communications for an upcoming article!

Susan Fisk, director of public and science communications

¹ See https://bit.ly/1y03hkk.

doi:10.2134/csa2019.64.0320